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ABSTRACT
One difficulty in using cryocoolers is making good thermal contact between the cooler and the
instrument being cooled.  The connection is often made through a bolted joint.  The temperature
drop associated with this joint has been the subject of many experimental and theoretical studies.
The low temperature behavior of dry joints has shown some anomalous dependence on the
surface condition of the mating parts.  There is also some doubt on how well one can extrapolate
from test samples to predicting the performance of a real system.

Both finite element and analytic models of a simple contact system have been developed.  The
models show that in the limit of actual contact area << the nominal area (a << A), that the excess
temperature drop due to a single point of contact scales as a-1/2.  This disturbance only extends a
distance ~ A1/2 into the bulk material.  A group of identical contacts will result in an excess
temperature drop that scales as n-1/2, where n is the number of contacts and n•a is constant.  This
implies that flat rough surfaces will have a lower excess temperature drop than flat smooth
surfaces.

NOMENCLATURE
a actual contact area (pd2)
ao area  when local yielding starts
A nominal contact area (pro2)
Am Area between elements
Cj coefficient Bessel expansion of T
Di,j coefficient of generalized expansion
F force
Fo force when local yielding starts
g2m Taylor expansion coefficients of T¢
i,j,m indices
(i,j) ith, jth       element      
J0 J1 Bessel functions
k thermal conductance
Lm distance between elements
n number of contacts
n0 n  when local yielding starts
Q heat flow
Qj Q at z = zj
r radius
ri = i Dr
ro radius of cylinder
Dr width of toroidal element

T temperature
Ti,j temperature of element (i,j)
Tm temperature of element (m)
To temperature at a perfect contact
Tx excess temperature
T¢ axial temperature gradient (∂T/∂z)
T¢• T¢ far from contact
DT excess temperature
DTn excess temperature for n contacts
DT1 excess temperature for 1 contact

  DT mean approx. excess temperature
DTaxial approx. on axis excess temperature
DTY Yovanovich's approximation
x = lj d
Dx change in x
z axial distance from contact
zj = j Dz
zmax maximum z
Dz height of toroidal element
d radius of contact
lj constant = jth zero of J1      
n variance



sy yield stress
INTRODUCTION
When two pieces of material are pressed together they only touch at a few small points.  If heat
flows across this joint the flow is constricted near these contacts.  This results in a temperature
difference across the joint which is bigger than for a perfect constrictionless joint.  This excess
temperature difference depends on the number and size of the contact points.  A simple way to
model this constriction is to consider a single point contact and then to extrapolate the result to a
system of multiple contacts.  The simplest single contact is an axisymmetric  circular contact
between two semi-infinite cylinders of identical material.  Such a system is illustrated in Figure 1
while Figure 2 shows the effect of the constriction on the heat flow.

For further simplicity the model assumes
(a) the contact is dry (the spaces in-between the actual contact patches are perfect

insulators),
(b) contacts are clean (conductivity of the actual contact is the same as the bulk),
(c) small temperature gradients (the bulk conductance is assumed to be temperature

independent),
(d) the absolute temperature is low (thermal radiation effects are ignored), and
(e) the dimension, ro, of the nominal contact area is small compared to the axial length of

the bulk material (the contact effects are localized near the contact).
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Figure 1. Diagram of a single contact between two
semi-infinite cylinders.  The contact is the shaded
region.

Figure 2. Representation of lines of heat flow near
a constricting contact.
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Figure 3. Temperature profile with and without the constriction due to a contact.



From symmetry, the two semi-infinite cylinders of Figure 1 are identical.  The temperature
profile will be symmetrical about the contact.  Thus, only one of the cylinders need be
considered.  Figure 3 illustrates the expected temperature profile in the right semi-infinite
cylinder of Figure 1.

The steady state temperature distribution is
  —2T = 0 (1)



with the boundary conditions:
1) The r = ro boundary is adiabatic for all z.  There is no heat flow through the side walls;

i.e., ∂T/∂r = 0 at z ≥ 0, r = ro.
2) The z = 0, d < r ≤ ro boundary is adiabatic.  There is no heat transfer across the gap

between the two cylinders; i.e., ∂T/∂z = 0 at z = 0, d < r ≤ ro.
3) By the symmetry of the two cylinders, the contact is isothermal; i.e., T = T0 + DT or

∂T/∂r = 0 at z = 0, r ≤ d.
Two approaches will be used to find a solution of this boundary value problem.  The first will
use a finite element model.  The second will be to find an approximate analytic solution.  Next,
the two solutions will be compared to each other and to an earlier approximate solution.1
Finally, some practical implications of the results will be discussed.  The details of the finite
element model are given in Appendix A.  Appendices B,C, and D give the derivation of the
analytic solution.

COMPARISON
Finite element models using three different numbers of elements were used.  These were 25x76,
50x153, and 100x152 toroidal elements, where the first number refers to the radial direction and
the second number to the axial direction.  Both Dz and Dr were reduced by a factor of two for
each successive model and Dz = Dr for all models.  The contact at z = 0 was varied from a single
element (d = Dz) to all elements (d = ro).  Typical axial and radial profiles are show in Figs. 4
and 5.  The figures plot normalized (dimensionless) quantities.  These are T/[ro T¢∞], z/ro, and
r/ro for temperature, axial distance, and radial distance.

The axial temperature profiles in Figure 4 clearly show that the disturbance caused by the contact
only penetrates a short distance into the cylinder.  The disturbance is limited to the region z < ro.
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Figure 4. On axis temperature profiles for several values of d/ro.  The inset shows the same
curves over an expanded range.  The curves were produced by the 100x152 finite element model



This can be seen also from the analytic model.  The axial dependence of Eq. (B.2) is dominated
be the exp(-l1z) term where l1 ≈ 3.8/ro.  As a result, the penetration of the disturbance is nearly
independent of d.  Within the z < ro region the temperature approaches the excess heat, DT,
monotonically.

The radial behavior (Figure 5) also shows a dependence on d.  For d/ro < 0.5 and r  ~>  2 d the
radial dependence appears to converge to a single function of r.  For r ≤ d the temperature is
constant (as required by the boundary conditions) and is equal to the excess heat.

The excess heat, DT, is shown for all three finite element models in Figure 6. Also shown are the
results of the analytic model and of an earlier model.1  The differences for large d (  ~>  0.1)
between the three finite element models probably is due to several effects:



-4

-3

-2

-1

0

0 0.2 0.4 0.6 0.8 1

Te
m

pe
ra

tu
re

 (T
/[

r o T
¢ ∞

 ])

Radius (r/r o )

d/ro = 0.84
0.56

0.28

0.080.02

Figure 5. The contact plane (z = 0) temperature profiles for several values of d/ro.  (For d/ro = 1
the profile would be T = 0.)  The curves were produced by the 100x152 finite element model.
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Figure 6. Excess temperature, |DT|, for all three finite element models; for the analytic
expressions: Eqs, (2), (3), and (4); and the small d asymptote.





a) The model averages quantities over each element.  If the quantities vary rapidly over an
element, then errors are introduced.  Decreasing the element size decreases this effect.  In
the region near z%= 0, r = d the accuracy of the finite element model is particularly poor.
In this region T and its derivatives vary rapidly.

b) Rounding errors increase as the element size decreases due to the small differences
involved.

c) The convergence of the models may not be complete and may be effected by the
rounding errors.

For small d the first of these effects is particularly prevalent.  Figure 6 shows that for small d, the
finite element models start to deviate from each other and from the analytic models.  For each of
the finite element models the smallest d used was for a contact of one element.  Both Figure 4
and Figure 5 show that the derivatives of the temperature (∂T/∂z, ∂T/∂r, ∂2T/∂z2, and ∂2T/∂r2)
are largest near z = 0, r = d and the derivatives increase with decreasing d.  Thus, when the
contact is only a few elements wide, element wide averaging no longer reflect the true behavior.
In Figure 6 this deviation is noticeable only for contacts that are 3 or less elements wide.

Three analytic curves are shown in Figure 6.  Two are derived in Appendix B using a model
based on the Taylor series of T ¢ at z = 0  over 0 ≤ r ≤ d.  Only the lowest order term of this
expansion is kept.  In this approximation the approximate axial temperature, Eq. (B.19), is

   
DTaxial = – 2roT•

¢ ro
d

J1 l jd l jro
2J0

2 l jro
J1 l jd l jro

2J0
2 l jroS

j= 1

•

(2)

and the average contact temperature, Eq. (B.21), is
   

DT = – 4roT•
¢ ro

2

d2
J1

2 l jd l jro
3 J0

2 l jro
J1

2 l jd l jro
3 J0

2 l jroS
j= 1

•

(3)

where J1(ljro) = 0.  Yovanovich assumed T¢ µ [1 - (r/d)2]-1/2 and found an average temperature
   

DTY = – 2roT•
¢ ro

2

d2
J1 l jd sin l jd l jro

3 J0
2 l jroJ1 l jd sin l jd l jro

3 J0
2 l jroS

j= 1

•

(4)

For r  ~<  0.6 ro, Eqs. (3) and (4) are nearly the same and are good fits to the finite element model.
For larger values of r, Eq. (3) remains being a good fit while Eq. (4) significantly under predicts
the excess heat.

DISCUSSION
In the limit of small d, the asymptotic behavior of the excess temperature has the form |DT/T¢∞| ≈
ro2/d (see Appendix C).  This is the asymptote shown in Figure 6.  The nominal contact area is A
= p ro2 and the actual contact area is a = p d2.  Thus

|DT / T¢∞| ≈ A (p/a)1/2 (5)

Now consider a system of n identical contacts uniformly distributed across a surface.  Each
contact has an actual contact area of a for a total actual contact area of n.a.  The total nominal
contact area is the whole surface, A.  Each contact will give rise to an excess heat as if it had a
nominal contact area of A/n.  Thus, by Eq. (5), the excess heat will be

|DTn / T¢∞| ≈ A/n (p/a)1/2 (6)
If instead, there was only a single contact with the same actual contact area, n.a, and the same
nominal contact area, A, its excess heat would be

|DT1 / T¢∞| ≈ A (p/na)1/2 (7)
Thus DT1 = n1/2 DTn (8)
The excess heat scales as n-1/2.  For the same actual contact area, many small contacts results in a
smaller DT than it would for a few large contacts.

For very small forces the contact is restricted to few points (~3).  Each of these points is lightly
loaded at less than the yield stress.  As the stress is increased, the actual contact area increases
rapidly.  Eventually there is local yielding at the contact points.  Above the yield stress, the total
contact area is

n.a ≈ (F - Fo)/sy + no.ao ,    for F > Fo (9)
Thus, n.a is a linear function of the applied force.  The total contact area depends only on the
force, not on the number of contacts nor on the nominal surface area.  Thus a rough surface
which touches at many points will have a smaller DT than a smooth surface with a single contact.



This may explain some of the anomalous results that have been reported.  Salerno, et.al.2 found
that for a set of brass contacts, the ones with a 0.2 and 0.4 mm finish had a factor of 2 less excess
heat than contacts with 0.1, 0.8, or 1.6 mm finish.  It is possible that the 0.2 and 0.4 mm samples
formed more contact points.  While this is not in agreement with the above suggestion that
rougher is better, other factors can also influence the number of contacts.  Such factors are
flatness and waviness of the surface.  Eventhough all the samples were nominally flat, the
surface finishing process may have left some samples with a slight curvature.

In summary, finite element and analytic models of the excess temperature for a simple contact
system were developed.  In the limit of actual contact area « the nominal area (a « A), the excess
temperature drop due to a single point of contact scales as a-1/2.  This disturbance only extends a
distance ~ A1/2 into the bulk material.  A group of identical contacts will result in an excess
temperature drop that scales as n-1/2, where n is the number of contacts and n.a is constant.  This
implies that flat rough surfaces will have a lower excess temperature drop than flat smooth
surfaces.
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APPENDIX A - FINITE ELEMENT MODEL
The finite element model is quite simple.  In setting up the elements, one can take advantage of
the cylindrical symmetry.  The cylinder is divided into a set of tori with rectangular crossections.
Figure A.1 shows a typical element.  For simplicity, the tori all have the same height and width.
The labeling scheme for the elements is shown in Figure A.2.  Where 0 ≤ ri ≤ ro, 0 ≤ zj ≤ zmax,
and zmax > ro.  Equation (1) can be rewritten as a thermal balance equation:

  Ti, j– Tm
A m Lm
A m Lm= 0Sm (A.1)

where m represents the set of four nearest neighbors of element (i,j).  The nearest neighbors to
(i,j) are m = {(i,j+1),(i+1,j),(i-1,j),(i,j-1)}.  For axial and radial neighbors respectively, Am/Lm
has the form:

  

Am
Lm

=

p ri + 12 – ri2 Dz– 1 ; m = i, j+ 1

2pri + 1Dz Dr– 1 ; m = i + 1, j

2priDz Dr– 1 ; m = i – 1, j

p ri + 1
2 – ri

2 Dz– 1 ; m = i, j– 1

(A.2)

The boundary conditions become
1) There are no elements for r > ro.  At this boundary the summation in Eq. (A.1) is over the

three nearest neighbors.
2) There are no elements for z < 0, d%<%r%≤%ro.  At this boundary the summation in Eq. (A.1)

is over the three nearest neighbors.
3) At the z = 0, r%≤%d %boundary, the

Figure A.1. Illustration of a typical element.
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Figure A.2. Labeling scheme for elements



temperature is uniform.  This is acheived by placing a set of "contact" elements at z = 0
which are all at the same temperature.  The Dz between the contact elements and the
regular elements is Dz/2 .

4) There are no elements for r < 0.  At this boundary the summation in Eq. (A.1) is over the
three nearest neighbors.

5) Only a finite length cylinder can be modeled by this method.  The cylinder is cut off at z
= zmax > ro and assumed to be isothermal at that surface.

Equation (A.1) can be solved for the Ti,j by an iterative process if two additional conditions are
imposed.  These may be any two of the following: T(z=zmax), T(z=0), or ∂T/∂z at either z = zmax
or z%= 0.  For ease of computation, Dz and Dr are kept constant and Eq. (A.1) was written as

  Ti, j= Tm
Am
LmSm

A m
LmSmTm

Am
LmSm

A m
LmSm (A.3)

Convergence was fastest if ∂T/∂z at z = zmax was fixed and if T(z=0) was adjusted after iteration
to force the heat flow through the contact to equal the flow at z = zmax.  The heat flow

  Q j= p Ti, j– Ti, j– 1 ri + 1
2 – ri

2 Dz – 1Si (A.4)
is a conserved quantity.  In a steady state solution, Qj is independent of j.  The Qj at z = 0 and at
z%= zmax were used to determine convergence.
APPENDIX B - ANALYTIC MODEL
Equation (1) may be written in cylindrical coordinates as

  ∂2T
∂r2 + 1

r
∂T
∂r + ∂2T

∂x2 = 0, T = T z, r, d (B.1)

This equation may be solved by standard separation of variables techniques.3  The general
solution that is finite over all of a semi-infinite cylinder (z ≥ 0, r ≤ ro) is

   
T z, r, d = T0 + T•

¢ z + C jJ0 l jr e–l jzS
j= 1

•

(B.2)

where the Cj are only functions of d.  The first two terms on right hand side of Eq. (B.2) are the
solution if the contact were perfect (d = ro).  The last term on the right hand side of Eq. (B.2) is
due to the constriction of the contact.  The excess temperature is

DT = T(0, r ≤ d, d) - T0 = 
   

C jJ0 l jrS
j= 1

•

(B.3)

By the boundary conditions, DT is only a function of d. At r = 0, Eq. (B.3) reduces to
DT =   S j= 1

• C j (B.3a)

The boundary conditions for Eq. (B.1) may be summarized as
   J1 l jro = 0

l jC jJ0 l jr = T•
¢ , d < r £ roS

j= 1

•

C jJ0 l jr = DT , r £ dS
j= 1

•

(B.4)

(B.5)

(B.6)

The first of these makes use of the relation ∂J0/∂r = lj J1.  Eq. (B.4) defines a set of discrete ljro
values called the zeros of J1.  The second boundary condition comes from evaluating ∂T/∂z = 0
for Eq. (B.2) at z = 0.  The final condition is that the contact is isothermal.

The difficulty in finding an analytic solution to this boundary value problem is the mixed nature
of the z = 0 boundary conditions.  This boundary is defined in terms of T for r ≤ d and in terms of
∂T/∂z for d < r ≤ ro.  If either T or ∂T/∂z were defined over the whole boundary, then a solution
would be straight forward.  The approach followed here is to find a replacement set of boundary
conditions which defines ∂T/∂z over the entire z = 0 interface.  The approach is to expand ∂T/∂z
about r = 0 at z = 0.  Then a boundary condition approximating the true condition will be used to
find an approximate solution.  Here the approximation uses only the lowest order term of the
∂T/∂z expansion.  More terms could be used for greater accuracy.  A means of using more terms
will be outlined in Appendix D.

For simplicity of notation, let T¢ = ∂T/∂z.  Then from Eq. (B.2)



   T¢ = T•
¢ – l jC jJ0 l jr e– l jzS

j= 1

•
(B.7)

The conservation of energy requires that the heat flow across any z = constant plane be
independent of z.  In equation form, this statement may be written as

  
Q = k 2p T¢ r dr

0

ro (B.8)

Evaluating this at z = ∞ and at z = 0 and recalling the second boundary condition (T¢ = 0 at z = 0,
d%< r ≤ ro), results in

  
2p T•

¢ r dr
0

ro = 2p T¢ 0,r,d r dr
0

d
(B.9)

The integrand,T¢, of Eq. (B.9) may be expanded in a Taylor series over the range r ≤ d:

where

   T¢ 0, r, d = T•
¢ + g2m(d) r2mS

m = 0

•

g2m(d) = 1
2m !

d2mT¢ 0,r,d
dr2m

r = 0

(B.10)

(B.11)

The odd terms of the expansion in Eq. (B.10) vanish because of the cylindrical symmetry; i.e.
T¢(z,%-r, d) = T¢(z, r, d).  Substituting Eqs. (B.10) and (B.11) into Eq. (B.9) and evaluating the
integral gives

  
ro

2 T•
¢ = d2 T•

¢ + g0 + 2m + 2 – 1g2m d d2m + 2S
m = 1

•
(B.12)

Keeping only the lowest order terms yields
  g0 ª T•

¢ ro2 d2ro2 d2 – 1 (B.13)
where g0 = T¢(0, 0, d) - T¢∞ (B.14)
This is a replacement boundary condition for z = 0 and r ≤ d.  By substituting Eqs. (B.13) and
(B.14) into Eq. (B.7), the new set of boundary conditions may be written as

   J1 l jro = 0

l jC jJ0 l jrS
j= 1

•
=

T•
¢ 1 – ro

2 d–2 ; r £d

T•
¢ ; d < r £ ro

(B.15)

(B.16)

Eqs. (B.15) and (B.16) are based on only the lowest order term of the expansion of ∂T/∂z.  The
coefficient of this term, g0, was found using an additional constraint, the conservation of energy.
If higher order terms are desired then yet more constraints will be needed to find the new
coefficients, g2m.  Appendix D contains a discussion of an approach to this problem.

Equations (B.15) and (B.16) may solved using standard Bessel function techniques,3 yielding
   

C j= – 2roT•
¢ ro

d

J1 l jd

l jro
2J0

2 l jro
(B.17)

Substituting this into Eq. (B.3) gives the excess temperature:
   

Tx = – 2roT•
' ro

d
J1 l jd J0 l jr l jro

2 J0
2 l jro

J1 l jd J0 l jr l jro
2 J0

2 l jroS
j= 1

•

(B.18)

Because Eq. (B.17) is based on an approximation of ∂T/∂z the third boundary condition, Eq.
(B.6), is not met.  This calculated temperature, Tx, across the contact is not constant, rather
|Tx/T¢∞| is a maximum at r = 0 and decreases with increasing r.  This is shown in Figure B.1..
The on axis (r = 0) value for this estimate is

   
DTaxial = – 2roT•

¢ ro
d

J1 l jd l jro
2J0

2 l jro
J1 l jd l jro

2J0
2 l jroS

j= 1

•

(B.19)

Because Eq. (B.19) represents an extrema, it over estimates the excess heat.  The average value
of Tx might be a more reasonable quantity to use.  The average value is

  
DT = 1

p d2 Tx 2p r dr
0

d
(B.20)



Substituting Eq. (B.18) into Eq. (B.20), integrating and using the relation ∫xJ0(x)dx = xJ1(x)
yields

   
DT = – 4roT•

¢ ro
2

d2
J1

2 l jd l jro
3 J0

2 l jro
J1

2 l jd l jro
3 J0

2 l jroS
j= 1

•

(B.21)

APPENDIX C - ASYMPTOTIC BEHAVIOR OF DT IN THE LIMIT OF SMALL d
This appendix will derive the asymptotic behavior of DT in the limit of small d.  Three similar
equations have been given for DT as a function of d.  These are Eqs. (B.19), (B.21), and (4):

   
DTaxial = – 2roT•

¢ ro
d

J1 l jd l jro
2J0

2 l jro
J1 l jd l jro

2J0
2 l jroS

j= 1

•

(C.1)

   
DT = – 4roT•

¢ ro
2

d2
J1

2 l jd l jro
3 J0

2 l jro
J1

2 l jd l jro
3 J0

2 l jroS
j= 1

•

(C.2)

   
DTY = – 2roT•

¢ ro
2

d2
J1 l jd sin l jd l jro

3 J0
2 l jroJ1 l jd sin l jd l jro

3 J0
2 l jroS

j= 1

•

(C.3)

In the limit of large j, J02(ljro) ≈ 2/pljro and ljro ≈ (j + 1/4) p .  In the limit of small d, the
summations in Eqs. (C.1), (C.2), and (C.3) can be replaced by integrations.  This is done by
multiplying the addend by Dx/Dx where x = ljd.  The upper Dx becomes dx, while the lower one
becomes d Dlj = dp/ro.  Thus the three expressions for DT become

   
DTaxial ~ – roT•

¢ ro
d

J1(x) dx
x0

•
= – roT•

¢ ro
d

(C.4)

   
DT ~ – roT•

¢ ro
d

J1
2(x) dx

x2
0

•
ª – 0.85 roT•

¢ ro
d

(C.5)

   
DTY ~ – roT•

¢ ro
d

J1(x) sin(x) dx
x2

0

•
ª – 0.78 roT•

¢ ro
d

(C.6)

APPENDIX D - A GENERALIZED EXPANSION SOLUTION
Appendix B found a solution using the lowest order expansion of T¢ at z = 0, r ≤ d.  This
appendix will outline a more general solution.  Eq. (B.10) gives the complete expansion.  If a
solution of order n (0 ≤ n < ∞) is desired, then Eq. (B.10) can be written as
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where

   T¢ 0, r, d = T•
¢ + g2m(d) r2mS

m = 0

n

g2m(d) = 1
2m !

d2mT¢ 0,r,d
dr2m

r = 0

(D.1)

(D.2)

Evaluating Eq. (B.7) at z = 0:
   T¢ = T•

¢ – l jC jJ0 l jrS
j= 1

•

(D.3)
Recalling the boundary condition T¢ = 0 for d < r ≤ ro and combining Eqs. (D.1) and (D.3), yields

   
l jC jJ0 l jrS

j= 1

•
=

– g2mr2mSm = 0
n , r £ d

T•
¢ , d < r £ ro

(D.4)

This may be written as a linear combination boundary value problems.  Replacing the Cj by
  C j= g2mD j,mSm = –1

n (D.5)
where Dj,m are defined by

   

l jD j,mJ0 l jrS
j= 1

•
=

– r2m , 0 £ m £ n, r £ d

0 , 0 £ m £ n, d < r £ ro
or m = –1, r £ d

T•
¢ , m = –1, d < r £ ro

(D.6)

and g-2 ≡ 1.  Using this expansion, the excess heat, Eq. (B.3). becomes
   

Tx = g2mD j,mS
m = –1

n
J0 l jrS

j= 1

•
(D.7)

We want Tx = DT, where Tx is a function of r and DT is a constant.  This can only be achieved as
n Æ ∞.  The best that can be done for a finite n is to minimize the variance between the two.
The variance is

  
n = 2

d2 Tx – DT 2r dr
0

d
(D.8)

The minimum occurs when ∂n/∂g2m = 0 for all m.  Applying this to Eq. (D.8) yields
  
∂n

∂g2m
= 4

d2 Tx – DT ∂Tx
∂g2m

r dr
0

d
= 0 (D.9)

Substituting Eq. (D.7) into (D.9), differentiating, integrating, and rearranging terms gives
   

g2kS
k = 0

n
D j,kS

j= 0

•
J0 l jr J0 lir r dr

0

d
= DT d

li
J1 lid (D.10)

where 0 ≤ i ≤ n.  Eq. (D.10) is a set of n+1 linear equations in n+2 unknowns.  The unknowns are
the n+1 g2k and DT.  A final condition is the conservation of energy, Eq. (B.12):

  
T•

¢ ro
2

d2 – 1 = 2m + 2 – 1g2m d2mS
m = 1

n
(D.11)

Solving this set of equations, Eqs, (D.10) and (D.11), will give the nth order approximation for      
Tx and DT.


